This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144680 #7 Oct 20 2021 08:02:24 %S A144680 1,2,3,3,5,7,4,7,11,14,5,9,15,21,25,6,11,19,28,36,41,7,13,23,35,47,57, %T A144680 63,8,15,27,42,58,73,85,92,9,17,31,49,69,89,107,121,129,10,19,35,56, %U A144680 80,105,129,150,166,175 %N A144680 Triangle read by rows, lower half of an array formed by A004736 * A144328 (transform). %C A144680 Triangle read by rows, lower half of an array formed by A004736 * A144328 (transform). %H A144680 G. C. Greubel, <a href="/A144680/b144680.txt">Rows n = 1..50 of the triangle, flattened</a> %F A144680 Sum_{k=1..n} T(n, k) = A006008(n). %F A144680 From _G. C. Greubel_, Oct 18 2021: (Start) %F A144680 T(n, k) = (1/6)*( 3*(k^2 - k + 2)*n - k*(k-1)*(2*k-1) ). %F A144680 T(n, n) = A004006(n). %F A144680 T(n, n-1) = A050407(n+2). %F A144680 T(n, n-2) = A027965(n-1) = A074742(n-2). (End) %e A144680 The array is formed by A004736 * A144328 (transform) where A004736 = the natural number decrescendo triangle and A144328 = a crescendo triangle. First few rows of the array = %e A144680 1, 1, 1, 1, 1, 1, ... %e A144680 2, 3, 3, 3, 3, 3, ... %e A144680 3, 5, 7, 7, 7, 7, ... %e A144680 4, 7, 11, 14, 14, 14, ... %e A144680 5, 9, 15, 21, 25, 25, ... %e A144680 ... %e A144680 Triangle begins as: %e A144680 1; %e A144680 2, 3; %e A144680 3, 5, 7; %e A144680 4, 7, 11, 14; %e A144680 5, 9, 15, 21, 25; %e A144680 6, 11, 19, 28, 36, 41; %e A144680 7, 13, 23, 35, 47, 57, 63; %e A144680 8, 15, 27, 42, 58, 73, 85, 92; %e A144680 9, 17, 31, 49, 69, 89, 107, 121, 129; %e A144680 10, 19, 35, 56, 80, 105, 129, 150, 166, 175; %e A144680 ... %t A144680 T[n_, k_]:= (3*(k^2-k+2)*n - k*(k-1)*(2*k-1))/6; %t A144680 Table[T[n, k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Oct 18 2021 *) %o A144680 (Sage) %o A144680 def A144680(n,k): return (3*(k^2-k+2)*n - k*(k-1)*(2*k-1))/6 %o A144680 flatten([[A144680(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Oct 18 2021 %Y A144680 Cf. A004006, A006008, A027965, A050407, A074742, A144328. %K A144680 nonn,tabl %O A144680 1,2 %A A144680 _Gary W. Adamson_, Sep 19 2008