A144685 Size of acyclic domain of size n based on the alternating scheme.
1, 2, 4, 9, 20, 45, 100, 222, 488, 1069, 2324, 5034, 10840, 23266, 49704, 105884, 224720, 475773, 1004212, 2115186, 4443896, 9319702, 19503224, 40750884, 84990640, 177017810, 368108680, 764571492, 1585851248, 3285861924, 6800042704, 14059397560, 29037419424
Offset: 1
Links
- A. Galambos and V. Reiner, Acyclic sets of linear orders via the Bruhat order, Social Choice and Welfare, 30 (No. 2, 2008), 245-264.
- Bernard Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. Available as a preprint halshs-00198635.
- Bei Zhou and Søren Riis, An efficient heuristic search algorithm for discovering large Condorcet domains, 4OR (2025). See Sect. 4.2.
Crossrefs
Cf. A369614.
Programs
-
SageMath
def a(n): return (n+3)*2^(n-3) - (binomial(n-2,n/2-1)*(n-3/2) if is_even(n) else binomial(n-1,(n-1)/2)*(n-1)/2) print([a(n) for n in (1..20)]) # Andrey Zabolotskiy, Oct 20 2024
Formula
Monjardet quotes the following formula from Galambos and Reiner: if n mod 2 = 0 then a(n) = 2^(n-3)*(n+3)-binomial(n-2,n/2-1)*(n-3/2), otherwise a(n) = 2^(n-3)*(n+3)-binomial(n-1,(n-1)/2)*(n-1)/2. [Corrected by Jan Volec (janvolec(AT)jikos.cz), Oct 26 2009]
a(n) ~ n*2^(n-3). - Clayton Thomas, Aug 19 2019
Extensions
More terms added, using the formula, by Andrey Zabolotskiy, Oct 20 2024