cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144685 Size of acyclic domain of size n based on the alternating scheme.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 100, 222, 488, 1069, 2324, 5034, 10840, 23266, 49704, 105884, 224720, 475773, 1004212, 2115186, 4443896, 9319702, 19503224, 40750884, 84990640, 177017810, 368108680, 764571492, 1585851248, 3285861924, 6800042704, 14059397560, 29037419424
Offset: 1

Views

Author

N. J. A. Sloane Feb 07 2009

Keywords

Crossrefs

Cf. A369614.

Programs

  • SageMath
    def a(n):
        return (n+3)*2^(n-3) - (binomial(n-2,n/2-1)*(n-3/2) if is_even(n)
                           else binomial(n-1,(n-1)/2)*(n-1)/2)
    print([a(n) for n in (1..20)]) # Andrey Zabolotskiy, Oct 20 2024

Formula

Monjardet quotes the following formula from Galambos and Reiner: if n mod 2 = 0 then a(n) = 2^(n-3)*(n+3)-binomial(n-2,n/2-1)*(n-3/2), otherwise a(n) = 2^(n-3)*(n+3)-binomial(n-1,(n-1)/2)*(n-1)/2. [Corrected by Jan Volec (janvolec(AT)jikos.cz), Oct 26 2009]
a(n) ~ n*2^(n-3). - Clayton Thomas, Aug 19 2019

Extensions

More terms added, using the formula, by Andrey Zabolotskiy, Oct 20 2024