A144712 Ordered sequence of Fibonomial coefficients.
1, 2, 3, 5, 6, 8, 13, 15, 21, 34, 40, 55, 60, 89, 104, 144, 233, 260, 273, 377, 610, 714, 987, 1092, 1597, 1820, 1870, 2584, 4181, 4641, 4895, 6765, 10946, 12376, 12816, 17711, 19635, 28657, 33552, 46368, 75025, 83215, 85085, 87841, 121393, 136136
Offset: 1
Keywords
Examples
f_1=1, f_2=2, f_3=3, f_4=5, f_5=6.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..88
- D. E. Knuth and H. S. Wilf, The Power of a Prime that Divides a Generalized Binomial Coefficient, J. Reine Angew. Math. 396 (1989), 212-219.
- Édouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American J. Math. 1 (1878), 184-240, 289--321.
- Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Diego Marques and Pavel Trojovsky, On Divisibility of Fibonomial Coefficients by 3, Journal of Integer Sequences, Vol. 15 (2012), #12.6.4.
Crossrefs
Cf. A010048. - Robert G. Wilson v, Dec 04 2009
Programs
-
Mathematica
f[n_, k_] := Product[Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Take[ Union@ Flatten@ Table[ f[n, i], {n, 0, 27}, {i, 0, n}], 47] (* Robert G. Wilson v, Dec 04 2009 *)
Formula
{[n,k]F = (F_n...F{n-k+1})/(F_1...F_k),n,k integers} = {f_1 < f_2 < f_3 < ...}
Extensions
a(16)-a(47) from Robert G. Wilson v, Dec 04 2009
Comments