This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144752 #19 Sep 17 2021 17:26:03 %S A144752 9,17,21,45,51,65,85,93,99,107,189,219,231,257,297,325,365,381,387, %T A144752 427,443,455,471,765,891,951,975,1105,1161,1241,1285,1365,1421,1501, %U A144752 1533,1539,1619,1675,1755,1787,1799,1879,1911,1935,1967,3069,3579,3831,3951 %N A144752 Positive integers whose binary representation is a palindrome and has a prime number of 0's. %C A144752 Each term of this sequence is in both sequence A006995 and sequence A144754. %H A144752 Indranil Ghosh, <a href="/A144752/b144752.txt">Table of n, a(n) for n = 1..11167</a> %e A144752 17 in binary is 10001. This binary representation is a palindrome, it contains three 0's, and three is a prime. So 17 is a term. %o A144752 (Python) %o A144752 from sympy import isprime %o A144752 def ok(n): b = bin(n)[2:]; return b == b[::-1] and isprime(b.count('0')) %o A144752 print(list(filter(ok, range(4000)))) # _Michael S. Branicky_, Sep 17 2021 %o A144752 (Python) # faster for computing initial segment of sequence %o A144752 from sympy import isprime %o A144752 from itertools import product %o A144752 def ok2(bin_str): return isprime(bin_str.count("0")) %o A144752 def bin_pals(maxdigits): %o A144752 yield from "01" %o A144752 digits, midrange = 2, [[""], ["0", "1"]] %o A144752 for digits in range(2, maxdigits+1): %o A144752 for p in product("01", repeat=digits//2-1): %o A144752 left = "1"+"".join(p) %o A144752 for middle in midrange[digits%2]: %o A144752 yield left + middle + left[::-1] %o A144752 def auptopow2(e): return [int(b, 2) for b in filter(ok2, bin_pals(e))] %o A144752 print(auptopow2(12)) # _Michael S. Branicky_, Sep 17 2021 %Y A144752 Cf. A144753, A006995, A144754 %K A144752 base,nonn %O A144752 1,1 %A A144752 _Leroy Quet_, Sep 20 2008 %E A144752 Extended by _Ray Chandler_, Nov 04 2008 %E A144752 Name edited by _Michael S. Branicky_, Sep 17 2021