This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144815 #33 Jul 20 2023 16:28:57 %S A144815 1,3,-1,15,-5,3,35,-35,21,-5,315,-105,189,-45,35,693,-1155,693,-495, %T A144815 385,-63,3003,-3003,9009,-2145,5005,-819,231,6435,-15015,27027,-32175, %U A144815 25025,-12285,3465,-429,109395,-36465,153153,-109395,425425,-69615,58905,-7293,6435 %N A144815 Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions. %C A144815 All even coefficients of t_n have to be 0, because t_n is defined to be point-symmetric with respect to the origin, with vanishing n-th derivative for x=1. %C A144815 A sigmoidal transfer function sigma_n: R->[ -1,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = t_n(x) if x in [ -1,1] and sigma_n(x) = -1 if x<-1. %H A144815 Alois P. Heinz, <a href="/A144815/b144815.txt">Rows n = 0..140, flattened</a> %H A144815 Alois P. Heinz, <a href="/A144815/a144815.gif">Animation of sigma_n(x) and their derivatives for n=0..15</a> %F A144815 See program. %e A144815 1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816 %e A144815 As triangle: %e A144815 1; %e A144815 3/2, -1/2; %e A144815 15/8, -5/4, 3/8; %e A144815 35/16, -35/16, 21/16, -5/16; %e A144815 315/128, -105/32, 189/64, -45/32, 35/128; %e A144815 ... %p A144815 t:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..10); %t A144815 row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 03 2014 *) %t A144815 Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2,1-n,3/2,x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)),x^2]],{n,1,9}]] (* _Eugeniy Sokol_, Aug 20 2019 *) %Y A144815 Denominators of T(n,k): A144816. %Y A144815 Column k=0 gives A001803. %Y A144815 Diagonal gives (-1)^n A001790(n). %Y A144815 Cf. A144702, A144703. %K A144815 frac,sign,tabl,look %O A144815 0,2 %A A144815 _Alois P. Heinz_, Sep 21 2008