This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144828 #81 Dec 20 2022 08:02:07 %S A144828 1,4,48,960,26880,967680,42577920,2214051840,132843110400, %T A144828 9033331507200,686533194547200,57668788341964800,5305528527460761600, %U A144828 530552852746076160000,57299708096576225280000,6646766139202842132480000,824199001261152424427520000,108794268166472120024432640000 %N A144828 Partial products of successive terms of A017113; a(0)=1. %C A144828 a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - _Justin M. Troyka_, Aug 11 2011 %C A144828 Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - _Justin M. Troyka_, Aug 11 2011 %H A144828 Vincenzo Librandi, <a href="/A144828/b144828.txt">Table of n, a(n) for n = 0..200</a> %H A144828 A. Hardt and J. M. Troyka, <a href="https://web.archive.org/web/20160417002155/http://www.mat.unisi.it/newsito/puma/public_html/23_3/hardt_troyka.pdf">Restricted symmetric signed permutations</a>, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179-217. %H A144828 A. Hardt and J. M. Troyka, <a href="https://apps.carleton.edu/curricular/math/assets/Andy_hardt_slides.pdf">Slides</a> (associated with the Hardt and Troyka reference above). %F A144828 a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k). %F A144828 a(n) = A052714(n+1). - _R. J. Mathar_, Oct 01 2008 %F A144828 a(n) = 2^n *(2*n)! / n!. - _Justin M. Troyka_, Aug 11 2011 %F A144828 G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - _Philippe Deléham_, Jan 07 2012 %F A144828 a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012 %F A144828 E.g.f.: 1/sqrt(1-8*x). - _Philippe Deléham_, May 14 2015 %F A144828 a(n) = 4^n * A001147(n). - _Philippe Deléham_, May 14 2015 %F A144828 a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - _Daniel Suteu_, Jan 06 2017 %F A144828 0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - _Michael Somos_, Jan 06 2017 %F A144828 a(n) = 2^n * (n+1)! * Catalan(n). - _G. C. Greubel_, Apr 02 2021 %F A144828 Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - _Amiram Eldar_, Dec 20 2022 %e A144828 a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ... %e A144828 Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses. These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011 %e A144828 G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ... %p A144828 A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # _G. C. Greubel_, Apr 02 2021 %t A144828 Table[4^n (2 n - 1)!!, {n, 0, 15}] (* _Vincenzo Librandi_, May 14 2015 *) %t A144828 Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* _Harvey P. Dale_, Dec 01 2015 *) %o A144828 (Magma) [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // _Vincenzo Librandi_, Aug 11 2011 %o A144828 (PARI) a(n)=binomial(2*n,n)*n!<<n \\ _Charles R Greathouse IV_, Jan 17 2012 %o A144828 (PARI) {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* _Michael Somos_, Jan 06 2017 */ %o A144828 (Sage) [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # _G. C. Greubel_, Apr 02 2021 %Y A144828 Cf. A000108, A001715, A002866, A007559, A008546, A017113, A047053, A048994, A049308, A144827. %Y A144828 Essentially the same as A052714. - _N. J. A. Sloane_, Feb 03 2013 %Y A144828 Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6). %K A144828 nonn,easy %O A144828 0,2 %A A144828 _Philippe Deléham_, Sep 21 2008