This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144835 #24 Mar 19 2025 07:41:52 %S A144835 2,10,127,18838,522338493,727608914652776081, %T A144835 990935377560451600699026552443764271, %U A144835 1223212384013602554473872691328685513734082755736750146553750539914774364 %N A144835 Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956). %H A144835 Amiram Eldar, <a href="/A144835/b144835.txt">Table of n, a(n) for n = 1..11</a> %H A144835 Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.42.4.329">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958</a>, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. <a href="http://www.jstor.org/stable/10.4169/college.math.j.43.4.337">Solution</a> published in Vol. 43, No. 4, September 2012, pp. 340-342. %H A144835 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>. %H A144835 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>. %e A144835 1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ... %t A144835 a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a %o A144835 (PARI) x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ _Charles R Greathouse IV_, Nov 08 2013 %Y A144835 Cf. A001466, A006487, A006524, A006525, A006526, A059956, A069139, A110820, A117116, A118323, A118324, A118325. %K A144835 frac,nonn %O A144835 1,1 %A A144835 _Artur Jasinski_, Sep 22 2008