cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144849 Coefficients in the expansion of the squared sine lemniscate function.

This page as a plain text file.
%I A144849 #56 Jul 22 2025 06:12:00
%S A144849 1,6,336,77616,50916096,76307083776,226653840838656,
%T A144849 1207012936807028736,10696277678308486742016,
%U A144849 148900090457044541209706496,3110043187741674836967136690176,93885206124269301790338015801901056,3970859549814416912519992571903015387136
%N A144849 Coefficients in the expansion of the squared sine lemniscate function.
%C A144849 Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.
%C A144849 Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - _Markus Kuba_, Nov 18 2014
%D A144849 J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.
%H A144849 N. J. A. Sloane, <a href="/A144849/b144849.txt">Table of n, a(n) for n = 0..100</a>
%H A144849 O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H. K. Hwang, <a href="https://doi.org/10.1007/978-3-662-49529-2_16">Increasing Diamonds</a>, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.
%H A144849 Markus Kuba, Alois Panholzer, <a href="http://arxiv.org/abs/1411.4587">Combinatorial families of multilabelled increasing trees and hook-length formulas</a>, arXiv:1411.4587 [math.CO], (17-November-2014).
%H A144849 Tanay Wakhare, Christophe Vignat, <a href="https://arxiv.org/abs/1909.01508">Taylor coefficients of the Jacobi theta3(q) function</a>, arXiv:1909.01508 [math.NT], 2019.
%H A144849 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LemniscateConstant.html">Lemniscate Constant</a>
%F A144849 E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - _Michael Somos_, Apr 25 2011
%F A144849 a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).
%F A144849 G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - _Michael Somos_, Jan 03 2013
%F A144849 E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - _Markus Kuba_, Nov 18 2014
%e A144849 G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...
%p A144849 a[0]:=1; b[0]:=1;
%p A144849 for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
%p A144849 a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
%p A144849 tb:=[seq(b[n],n=0..15)];
%t A144849 a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* _Michael Somos_, Apr 25 2011 *)
%t A144849 a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* _Michael Somos_, Apr 25 2011 *)
%t A144849 a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* _Michael Somos_, Apr 25 2011 *)
%t A144849 a[ n_] := If[n < 0, 0, With[{m = 4*n + 2}, m!*SeriesCoefficient[JacobiSN[x, -1]^2, {x, 0, m}]/(2*(-12)^n)]]; (* _Michael Somos_, Jul 10 2024 *)
%o A144849 (PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* _Michael Somos_, Apr 25 2011 */
%Y A144849 Cf. A064853, A144853.
%K A144849 nonn
%O A144849 0,2
%A A144849 _N. J. A. Sloane_, Feb 12 2009