cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A215896 Largest k = 2^(m - 1)*(2^m - 1) such that bigomega(k) = n or 0 if no such k exists.

Original entry on oeis.org

1, 0, 6, 28, 0, 496, 0, 8128, 2016, 0, 130816, 0, 2096128, 33550336, 0, 0, 134209536, 8589869056, 0, 137438691328, 0, 0, 0, 34359607296, 35184367894528, 8796090925056, 0, 562949936644096, 2251799780130816, 9007199187632128, 140737479966720, 2305843008139952128, 0
Offset: 1

Views

Author

Gerasimov Sergey, Aug 25 2012

Keywords

Comments

Largest k = 2^(m-1)*(2^m-1) such that bigomega(k) = prime(n) or 0 if no such k exists (other version): 6, 28, 496, 8128, 0, 0, 8589869056, 137438691328, 34359607296, 9007199187632128, 2305843008139952128, 0, ...
Mersenne exponents (A000043): numbers n such that omega(2^(n-1)*(2^n-1)) = 2, or bigomega(2^(n-1)*(2^n-1)) = n, or tau(2^(n-1)*(2^n-1)) = 2n, or sigma(2^(n-1)*(2^n-1)) = 2^n*(2^n-1).
Smallest k = 2^(m-1)*(2^m-1) such that bigomega(k) = n or 0 if no such k exists : 1, 0, 6, 28, 0, 120, 0, 8128, 2016, 0, 32640, 0, 523776, 33550336, 0, 0, 8386560, 536854528, 0, 2147450880, 0, 0, 0, 34359607296, 2199022206976, 549755289600, 0, 562949936644096, 2251799780130816,...

Examples

			a(0) = 1 because 2^(1-1)*(2^1-1) = 1 and A001222(1) = 0,
a(2) = 6 because 2^(2-1)*(2^2-1) = 6 and A001222(6) = 2,
a(3) = 28 because 2^(3-1)*(2^3-1) = 28 and A001222(28) = 3,
a(5) = 496 because 2^(4-1)*(2^4-1) = 120, 2^(5-1)*(2^5-1) = 496 and A001222(120) = A001222(496) = 5, 496 > 120.
a(7) = 8128 because 2^(7-1)*(2^7-1) = 8128 and A001222(8128) = 7,
a(8) = 2016 because 2^(6-1)*(2^6-1) = 2016 and A001222(2016) = 8,
a(10) = 130816 because 2^(8-1)*(2^8-1) = 32640, 2^(9-1)*(2^9-1) = 130816 and A001222(32640) = A001222(130816) = 10, 130816 > 32640.
		

Crossrefs

Programs

  • Maple
    A215896 := proc(n)
          local m,k;
          for m from n+2 by -1 do
            k := 2^(m-1)*(2^m-1) ;
            if k < 0 then
                return 0 ;
            end if;
            if numtheory[bigomega](k) = n then
                return k ;
            end if;
        end do:
    end proc: # R. J. Mathar, Sep 11 2012
Showing 1-1 of 1 results.