cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144863 Start with 1, then at each step prepend 10 and append 01.

This page as a plain text file.
%I A144863 #18 Mar 11 2024 11:32:20
%S A144863 1,10101,101010101,1010101010101,10101010101010101,
%T A144863 101010101010101010101,1010101010101010101010101,
%U A144863 10101010101010101010101010101,101010101010101010101010101010101
%N A144863 Start with 1, then at each step prepend 10 and append 01.
%C A144863 Bisection of A094028. - _Omar E. Pol_, Nov 12 2008
%C A144863 a(n) is also A144864(n) written in base 2. - _Omar E. Pol_, Nov 13 2008
%C A144863 Quadrisection of A147759. - _Omar E. Pol_, Nov 16 2008
%H A144863 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10001,-10000).
%F A144863 a(n) = (-1+100^(-1+2*n))/99.
%F A144863 If a(n) is interpreted as binary number, (-4+16^n)/12 gives the decimal representation of a(n).
%F A144863 a(n) = 10000*a(n-1)+101, n>1.
%F A144863 G.f.: x*(1+100*x) / ( (10000*x-1)*(x-1) ).
%t A144863 a = {}; k = {1}; Do[x = FromDigits[k, 2]; AppendTo[a, FromDigits[RealDigits[x, 2]]]; AppendTo[k, 0]; AppendTo[k, 1]; PrependTo[k, 0]; PrependTo[k, 1], {n, 1, 100}];
%t A144863 Table[FromDigits[RealDigits[1/12 (-4 + 16^n), 2]], {n, 1, 10}]
%t A144863 a = {}; k = 1; Do[AppendTo[a, k]; k = 10000 k + 101, {n, 1, 10}]; a
%t A144863 Table[1/99 (-1 + 100^(-1 + 2 n)), {n, 1, 20}]
%t A144863 LinearRecurrence[{10001,-10000},{1,10101},20] (* _Harvey P. Dale_, Aug 22 2014 *)
%Y A144863 Cf. A056830, A094028, A135576, A144864, A147759.
%K A144863 base,nonn,easy
%O A144863 1,2
%A A144863 _Artur Jasinski_, Sep 23 2008, Sep 25 2008