A144877 Partition number array, called M31(-3), related to A049410(n,m) = S1(-3;n,m) (generalized Stirling triangle).
1, 3, 1, 6, 9, 1, 6, 24, 27, 18, 1, 0, 30, 180, 60, 135, 30, 1, 0, 0, 270, 360, 90, 1080, 405, 120, 405, 45, 1, 0, 0, 0, 1260, 0, 1890, 2520, 5670, 210, 3780, 2835, 210, 945, 63, 1, 0, 0, 0, 0, 1260, 0, 0, 10080, 11340, 30240, 0, 7560, 10080, 45360, 8505, 420, 10080, 11340
Offset: 1
Examples
[1]; [3,1]; [6,9,1]; [6,24,27,18,1]; [0,30,180,60,135,30,1]; ... a(4,3) = 27 = 3*S1(-3;2,1)^2. The relevant partition of 4 is (2^2).
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)= (n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(S1(-3;j,1)^e(n,k,j),j=1..n) = M3(n,k)*product(S1(-3;j,1)^e(n,k,j),j=1..n) with S1(-3;n,1)|= A008279(3,n-1)= [1,3,6,6,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
Comments