A144880 Partition number array, called M31hat(3).
1, 3, 1, 12, 3, 1, 60, 12, 9, 3, 1, 360, 60, 36, 12, 9, 3, 1, 2520, 360, 180, 144, 60, 36, 27, 12, 9, 3, 1, 20160, 2520, 1080, 720, 360, 180, 144, 108, 60, 36, 27, 12, 9, 3, 1, 181440, 20160, 7560, 4320, 3600, 2520, 1080, 720, 540, 432, 360, 180, 144, 108, 81, 60, 36, 27
Offset: 1
Examples
[1];[3,1];[12,3,1];[60,12,9,3,1];[360,60,36,12,9,3,1];... a(4,3)= 9 = |S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)= product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A046089(1,n) = [1,3,12,60,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Comments