cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144886 Lower triangular array called S1hat(4) related to partition number array A144885.

Original entry on oeis.org

1, 4, 1, 20, 4, 1, 120, 36, 4, 1, 840, 200, 36, 4, 1, 6720, 1720, 264, 36, 4, 1, 60480, 12480, 2040, 264, 36, 4, 1, 604800, 118560, 16000, 2296, 264, 36, 4, 1, 6652800, 1081920, 149600, 17280, 2296, 264, 36, 4, 1, 79833600, 11793600, 1362240, 163680, 18304, 2296, 264
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(4):=A144885 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(4). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001715(n+2), A144888, A144889,...

Examples

			[1];[4,1];[20,4,1];[120,36,4,1];[840,200,36,4,1];...
		

Crossrefs

A144887 (row sums).

Formula

a(n,m)=sum(product(|S1(4;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(4,n,1)|= A049352(n,1) = A001715(n+2) = (n+2)!/3!.

A144888 Second column (m=2) of triangle A144886 (S1hat(4)).

Original entry on oeis.org

1, 4, 36, 200, 1720, 12480, 118560, 1081920, 11793600, 131443200, 1658764800, 21990528000, 319711795200, 4922394624000, 81508654080000, 1428114530304000, 26582538673152000, 521466739605504000, 10779099461222400000, 233753593186713600000, 5310546788872765440000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144886, A001715 (first column), A144889 (third column).

Formula

a(n) = A144886(n+2,2), n>=0.
Showing 1-2 of 2 results.