This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144902 #12 Jul 27 2022 10:36:28 %S A144902 0,1,9,45,166,505,1342,3224,7161,14938,29602,56211,102973,182963, %T A144902 316694,535947,889454,1451305,2333356,3703510,5812615,9034001, %U A144902 13921551,21294946,32364747,48915873,73576675,110213470,164508959,244810154,363371304,538175735 %N A144902 Expansion of x/((1-x-x^3)*(1-x)^8). %H A144902 Vincenzo Librandi, <a href="/A144902/b144902.txt">Table of n, a(n) for n = 0..1000</a> %H A144902 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,85,-134,154,-140,106,-65,29,-8,1). %F A144902 G.f.: x/((1-x-x^3)*(1-x)^8). %F A144902 From _G. C. Greubel_, Jul 27 2022: (Start) %F A144902 a(n) = Sum_{j=0..floor((n+7)/3)} binomial(n-2*j+7, j+8). %F A144902 a(n) = A099567(n+7, 8). (End) %p A144902 a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [9, -36, 85, -134, 154, -140, 106, -65, 29, -8, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40); %t A144902 CoefficientList[Series[x/((1-x-x^3)(1-x)^8), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 06 2013 *) %o A144902 (Magma) %o A144902 A144903:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+7, j+8): j in [0..Floor((n+7)/3)]]) >; %o A144902 [A144903(n): n in [0..40]]; // _G. C. Greubel_, Jul 27 2022 %o A144902 (SageMath) %o A144902 def A144903(n): return sum(binomial(n-2*j+7, j+8) for j in (0..((n+7)//3))) %o A144902 [A144903(n) for n in (0..40)] # _G. C. Greubel_, Jul 27 2022 %Y A144902 9th column of A144903. %Y A144902 Cf. A099567. %K A144902 nonn,easy %O A144902 0,3 %A A144902 _Alois P. Heinz_, Sep 24 2008