This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144925 #19 Nov 15 2018 09:30:19 %S A144925 1,2,2,1,2,4,2,2,3,4,4,2,2,6,1,2,2,4,6,4,2,2,2,7,2,2,6,6,4,4,2,8,1,4, %T A144925 2,4,6,2,6,2,2,10,2,4,5,2,6,4,2,6,10,2,4,4,2,6,8,3,2,10,2,2,2,6,10,2, %U A144925 4,2,2,2,10,4,4,7,6,6,6,2,10,6,2,8,6,2,4,4,2,2,14,1,2,2,4,2,10,6,2,6 %N A144925 Number of nontrivial divisors of the n-th composite number. %C A144925 1 and the number itself are excluded as divisors. %C A144925 First occurrence of k: 1, 2, 9, 6, 45, 14, 24, 32, 851, 42, 3531, 148, 109, 89, 58993, 138, ..., which corresponds to the composite number (A005179): 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, ..., . - _Robert G. Wilson v_, Aug 30 2009 %C A144925 Row lengths of table in A163870. - _Reinhard Zumkeller_, Mar 29 2014 %H A144925 Reinhard Zumkeller, <a href="/A144925/b144925.txt">Table of n, a(n) for n = 1..10000</a> %H A144925 R. P. Boas & N. J. A. Sloane, <a href="/A005381/a005381.pdf">Correspondence, 1974</a> %H A144925 Y. K. Huen, <a href="http://www.tandfonline.com/doi/ref/10.1080/0020739940250616">A matrix map for prime and non-prime numbers</a>, Int J Math. Educ. Sci. Technol. 6: 913-920, 1994. %F A144925 a(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2. %F A144925 A144925(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2. - _Robert G. Wilson v_, Aug 30 2009 %t A144925 Composite[n_Integer] := FixedPoint[n + PrimePi@# + 1 &, n + PrimePi@n + 1]; f[n_] := DivisorSigma[0, n] - 2; Table[f@ Composite@ n, {n, 101}] (* _Robert G. Wilson v_, Aug 30 2009 *) %t A144925 DivisorSigma[0,#]-2&/@Select[Range[300],CompositeQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Nov 15 2018 *) %o A144925 (PARI) k=1;vector(120,n,while(isprime(k++),0);numdiv(k)-2) %o A144925 (Haskell) %o A144925 a144925 = length . a163870_row -- _Reinhard Zumkeller_, Mar 29 2014 %Y A144925 Cf. A002808, A000005, A070824, A005179. - _Robert G. Wilson v_, Aug 30 2009 %K A144925 nonn %O A144925 1,2 %A A144925 Huen Yeong Kong (cosmology(AT)pacific.net.sg), Sep 25 2008 %E A144925 Sequence extended by _Juri-Stepan Gerasimov_, Aug 05 2009 %E A144925 Edited and extended by _Franklin T. Adams-Watters_, Aug 30 2009