This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144969 #35 Jan 28 2025 10:47:24 %S A144969 0,1,127,3025,34105,246730,1323652,5715424,20912320,67128490, %T A144969 193754990,512060978,1256328866,2892439160,6302524580,13087462580, %U A144969 26046574004,49916988803,92484925445,166218969675,290622864675,495564056130,825906183960,1347860993700 %N A144969 Stirling numbers of second kind S(n,n-6). %H A144969 T. D. Noe, <a href="/A144969/b144969.txt">Table of n, a(n) for n = 6..1000</a> %H A144969 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 29. %H A144969 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). %F A144969 With an offset of 1 the o.g.f. is D^6(x/(1-x)), where D is the operator x/(1-x)*d/dx. See A008517. For the e.g.f. see A112493. - _Peter Bala_, Jul 02 2012 %F A144969 G.f.: x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1)/(1-x-)^13. - _Colin Barker_, Oct 28 2014 %t A144969 Table[StirlingS2[n,n-6], {n,6,30}] (* _Harvey P. Dale_, Sep 21 2011 *) %o A144969 (Sage) [stirling_number2(n,n-6) for n in range(6, 28)] # _Zerinvary Lajos_, May 16 2009 %o A144969 (PARI) concat(0, Vec(x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1 )/(1-x)^13 + O(x^100))) \\ _Colin Barker_, Oct 28 2014 %o A144969 (PARI) for(n=6,50, print1(stirling(n,n-6,2), ", ")) \\ _G. C. Greubel_, Oct 23 2017 %Y A144969 Cf. A008517, A112493. %K A144969 nonn,easy %O A144969 6,3 %A A144969 _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008