A145006 Triangle read by rows, generator for the partition numbers, A000041.
1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 1, 1, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0
Offset: 0
Examples
First few rows of the triangle = 1; 1, 0; 1, 1, 0; 0, 1, 1, 0; 0, 0, 1, 1, 0; -1, 0, 0, 1, 1, 0; 0, -1, 0, 0, 1, 1, 0; -1, 0, -1, 0, 0, 1, 1, 0; 0, -1, 0, -1, 0, 0, 1, 1, 0; 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0; ...
Formula
Triangle by columns: let A = an infinite lower triangular matrix with the characteristic function of A001318: (1, 2, 5, 7, 12, 15,...) in every column; signed: (++ -- ++,...).
Shift triangle A down one place and insert "1" in the T(0,0) position, giving triangle A145006. The eigenvector of the triangle = A000041, the partition numbers: (1, 1, 2, 3, 5, 7, 11,...). Lim_{n=1..inf} A145006^n = A000041. Or, simply take a suitably large power of the triangle, which quickly converges to A000041 as a vector.
Comments