This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145033 #12 Feb 26 2020 09:05:47 %S A145033 1,1,1,1,3,1,1,5,6,1,1,7,14,10,1,1,9,25,30,15,1,1,11,39,65,55,21,1,1, %T A145033 13,56,119,140,91,28,1,1,15,76,196,294,266,140,36,1,1,17,99,300,546, %U A145033 630,462,204,45,1,1,19,125,435,930,1302,1218,750,285,55,1 %N A145033 T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). %C A145033 T(n,k) is also the rank of the semigroup of order-decreasing partial one-one transformations (of an n-chain) of height <= k. %C A145033 The matrix inverse starts: %C A145033 1; %C A145033 -1,1; %C A145033 2,-3,1; %C A145033 -8,13,-6,1; %C A145033 58,-95,46,-10,1; %C A145033 -672,1101,-535,120,-15,1; %C A145033 11374,-18635,9056,-2035,260,-21,1; - _R. J. Mathar_, Mar 29 2013 %H A145033 A. Umar, <a href="https://www.emis.de/journals/PM/53f1/pm53f102.pdf">On the ranks of certain finite semigroups of order-decreasing transformations</a> Portugaliae Math. 53, (1996), 23-34. %F A145033 T(n,k) = C(n,k)*((n-k)*(k+1)+1)/(n-k+1), (n>=k>=0). %e A145033 T(3,2) = 6 because there are exactly 6 amenable quasi-idempotent order-decreasing partial one-one transformations (on a 3- chain) of height 2, namely: (1,2)->(1,2), (1,3)->(1,2), (1,3)->(1,3), (2,3)->(1,3), (2,3)->(2,1), (2,3)->(2,3). %e A145033 1; %e A145033 1, 1; %e A145033 1, 3, 1; %e A145033 1, 5, 6, 1; %e A145033 1, 7, 14, 10, 1; %e A145033 1, 9, 25, 30, 15, 1; %e A145033 1, 11, 39, 65, 55, 21, 1; %e A145033 1, 13, 56, 119, 140, 91, 28, 1; %e A145033 1, 15, 76, 196, 294, 266, 140, 36, 1; %e A145033 1, 17, 99, 300, 546, 630, 462, 204, 45, 1; %e A145033 1, 19, 125, 435, 930,1302,1218, 750, 285, 55, 1; %o A145033 (PARI) T(n,k) = binomial(n,k)*((n-k)*(k+1)+1)/(n-k+1); %o A145033 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Apr 23 2018 %Y A145033 Row sums of T(n, k) is A005183. %K A145033 nonn,tabl %O A145033 0,5 %A A145033 _Abdullahi Umar_, Sep 30 2008 %E A145033 More terms from _Jinyuan Wang_, Feb 26 2020