This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145064 #16 Oct 28 2017 10:47:07 %S A145064 2,1,4,5,2,7,8,3,10,11,4,13,14,5,16,17,6,19,20,7,22,23,8,25,26,9,28, %T A145064 29,10,31,32,11,34,35,12,37,38,13,40,41,14,43,44,15,46,47,16,49,50,17, %U A145064 52,53,18,55,56,19,58,59,20,61,62,21,64,65,22,67,68,23,70,71,24,73,74,25 %N A145064 Reduced numerators of the first convergent to the cube root of n using the recursion x = (2*x+n/x^2)/3. %C A145064 The same as A051176 without the first two terms. %H A145064 Colin Barker, <a href="/A145064/b145064.txt">Table of n, a(n) for n = 0..1000</a> %H A145064 Cino Hilliard, <a href="http://groups.google.com/group/roots-by-recursion/web/recursion-on-polynomial">Roots by Recursion</a> [broken link] %H A145064 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1). %F A145064 The recursion was derived experimentally by analyzing the patterns of root recursions for polynomials %F A145064 f(x) = a(n)x^n+a(n-1)x^(n-1)+...+a(1)x+a(0) and %F A145064 g(x) = a(n-1)x^(n-1)+a(n-2)x^(n-2)+...+a(2)x+a(1) %F A145064 where the recursion x = a(0)/g(x) may or may not converge to a root and many iterations are required to get greater accuracy. By introducing an averaging scheme, a root is found if it exists and convergence is much faster to a root of f(x) See the link for details. This cubic recursion is equivalent to Newton's Method. %F A145064 From _Colin Barker_, Feb 02 2016: (Start) %F A145064 a(n) = 2*a(n-3)-a(n-6) for n>5. %F A145064 G.f.: (2+x+4*x^2+x^3-x^5) / ((1-x)^2*(1+x+x^2)^2). (End) %t A145064 CoefficientList[Series[(2+x+4*x^2+x^3-x^5)/((1-x)^2*(1+x+x^2)^2), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 26 2017 *) %o A145064 (PARI) %o A145064 rroot3(d,p) = /* Find a root of x^3 - d */Q { %o A145064 local(x=1,x1=1,j); %o A145064 for(j=1,p, %o A145064 x=(x1+x+d/x^2)/3; /* average scheme for a cube root of d */ %o A145064 x1=x; print1(numerator(x)","); %o A145064 ); %o A145064 } %o A145064 for(k=0,100,rroot3(k,1)) %o A145064 (PARI) Vec((2+x+4*x^2+x^3-x^5)/((1-x)^2*(1+x+x^2)^2) + O(x^100)) \\ _Colin Barker_, Feb 02 2016 %Y A145064 Cf. A051176 %K A145064 frac,nonn,easy %O A145064 0,1 %A A145064 _Cino Hilliard_, Sep 30 2008