This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145132 #14 Jun 13 2015 00:52:41 %S A145132 0,1,4,10,20,36,61,99,155,236,352,517,750,1077,1534,2171,3057,4287, %T A145132 5992,8353,11620,16138,22383,31012,42932,59395,82129,113519,156857, %U A145132 216687,299281,413296,570681,787929,1087805,1501731,2073078,2861710,3950256,5452767 %N A145132 Expansion of x/((1 - x - x^4)*(1 - x)^3). %C A145132 The coefficients of the recursion for a(n) are given by the 4th row of A145152. %H A145132 Vincenzo Librandi, <a href="/A145132/b145132.txt">Table of n, a(n) for n = 0..1000</a> %H A145132 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,0,-3,3,-1). %F A145132 a(n) = 4a(n-1) -6a(n-2) +4a(n-3) -3a(n-5) +3a(n-6) -a(n-7). %e A145132 a(8) = 155 = 4*99 -6*61 +4*36 -3*10 +3*4 -1. %p A145132 col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(4): seq(a(n), n=0..40); %t A145132 CoefficientList[Series[x / ((1 - x - x^4) (1 - x)^3), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 06 2013 *) %t A145132 LinearRecurrence[{4,-6,4,0,-3,3,-1},{0,1,4,10,20,36,61},40] (* _Harvey P. Dale_, Apr 04 2014 *) %o A145132 (PARI) concat(0,Vec(1/(1-x-x^4)/(1-x)^3+O(x^99))) \\ _Charles R Greathouse IV_, Sep 25 2012 %Y A145132 4th column of A145153. Cf. A145152. %K A145132 nonn,easy %O A145132 0,3 %A A145132 _Alois P. Heinz_, Oct 03 2008