This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145136 #21 Mar 29 2020 17:13:56 %S A145136 0,1,8,36,120,331,801,1761,3597,6931,12737,22506,38479,63974,103843, %T A145136 165109,257852,396439,601229,900934,1335886,1962555,2859794,4137468, %U A145136 5948374,8504704,12100779,17144439,24200381,34049989,47773928,66866159,93391324,130201994 %N A145136 Expansion of x/((1 - x - x^4)*(1 - x)^7). %C A145136 The coefficients of the recursion for a(n) are given by the 8th row of A145152. %H A145136 Alois P. Heinz, <a href="/A145136/b145136.txt">Table of n, a(n) for n = 0..1000</a> %H A145136 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -69, 49, -7, -27, 34, -21, 7, -1). %F A145136 a(n) = 8a(n-1) -28a(n-2) +56a(n-3) -69a(n-4) +49a(n-5) -7a(n-6) -27a(n-7) +34a(n-8) -21a(n-9) +7a(n-10) -a(n-11), with a(0)=0, a(1)=1, a(2)=8, a(3)=36, a(4)=120, a(5)=331, a(6)=801, a(7)=1761, a(8)=3597, a(9)=6931, a(10)=12737 %p A145136 col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(8): seq(a(n), n=0..40); %t A145136 CoefficientList[Series[x/((1-x-x^4)*(1-x)^7),{x,0,40}],x] (* or *) LinearRecurrence[{8,-28,56,-69,49,-7,-27,34,-21,7,-1},{0,1,8,36,120,331,801,1761,3597,6931,12737},40] (* _Harvey P. Dale_, Jan 03 2012 *) %o A145136 (PARI) concat(0,Vec(1/((1-x-x^4)*(1-x)^7)+O(x^99))) \\ _Charles R Greathouse IV_, Sep 25 2012 %Y A145136 8th column of A145153. Cf. A145152. %K A145136 nonn,easy %O A145136 0,3 %A A145136 _Alois P. Heinz_, Oct 03 2008