This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145137 #15 Aug 04 2015 14:57:49 %S A145137 0,1,9,45,165,496,1297,3058,6655,13586,26323,48829,87308,151282, %T A145137 255125,420234,678086,1074525,1675754,2576688,3912574,5875129,8734923, %U A145137 12872391,18820765,27325469,39426248,56570687,80771068,114821057,162594985 %N A145137 Expansion of x/((1 - x - x^4)*(1 - x)^8). %C A145137 The coefficients of the recursion for a(n) are given by the 9th row of A145152. %H A145137 Vincenzo Librandi, <a href="/A145137/b145137.txt">Table of n, a(n) for n = 0..1000</a> %H A145137 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -125, 118, -56, -20, 61, -55, 28, -8, 1). %F A145137 a(n) = [9, -36, 84, -125, 118, -56, -20, 61, -55, 28, -8, 1] * [a(n-1), ..., a(n-12)]. %p A145137 col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(9): seq(a(n), n=0..40); %t A145137 CoefficientList[Series[x/((1-x-x^4)(1-x)^8),{x,0,40}],x] (* or *) LinearRecurrence[{9,-36,84,-125,118,-56,-20,61,-55,28,-8,1},{0,1,9,45,165,496,1297,3058,6655,13586,26323,48829},40] (* _Harvey P. Dale_, Feb 22 2012 *) %o A145137 (PARI) concat(0,Vec(1/((1-x-x^4)*(1-x)^8)+O(x^99))) \\ _Charles R Greathouse IV_, Sep 25 2012 %Y A145137 9th column of A145153. Cf. A145152. %K A145137 nonn,easy %O A145137 0,3 %A A145137 _Alois P. Heinz_, Oct 03 2008