cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145144 2nd column of A145142.

This page as a plain text file.
%I A145144 #5 Feb 14 2014 08:57:38
%S A145144 1,3,11,50,634,6804,71868,789984,11025936,174509280,2940903360,
%T A145144 51707242080,987781034304,20520063789120,456583392034560,
%U A145144 10712403843563520,265316096850923520,6948996535924162560
%N A145144 2nd column of A145142.
%p A145144 row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 2) *(n-1)!): seq (a(n), n=3..23);
%t A145144 row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[3]]*(n-1)!; Table[a[n], {n, 3, 23}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *)
%Y A145144 Cf. A145153.
%K A145144 nonn
%O A145144 3,2
%A A145144 _Alois P. Heinz_, Oct 03 2008