This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145146 #5 Feb 14 2014 08:57:31 %S A145146 1,10,85,735,8449,112644,1605680,23932700,391910596,7073468688, %T A145146 138120962616,2862132655200,62993944853904,1476042415885824, %U A145146 36728281476425088,964322664638298624,26615080195964032896 %N A145146 4th column of A145142. %p A145146 row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 4) *(n-1)!): seq (a(n), n=5..25); %t A145146 row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[5]]*(n-1)!; Table[a[n], {n, 5, 25}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *) %Y A145146 Cf. A145153. %K A145146 nonn %O A145146 5,2 %A A145146 _Alois P. Heinz_, Oct 03 2008