This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145147 #5 Feb 14 2014 08:57:25 %S A145147 1,15,175,1960,25473,375165,5967170,99883410,1794863356,34897858996, %T A145147 729308423480,16183109779200,379985643499344,9441352087296912, %U A145147 247902890514328224,6852200357138738400,198716076620554542336 %N A145147 5th column of A145142. %p A145147 row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 5) *(n-1)!): seq (a(n), n=6..25); %t A145147 row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[6]]*(n-1)!; Table[a[n], {n, 6, 25}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *) %Y A145147 Cf. A145153. %K A145147 nonn %O A145147 6,2 %A A145147 _Alois P. Heinz_, Oct 03 2008