cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145151 9th column of A145142.

This page as a plain text file.
%I A145151 #5 Feb 14 2014 08:57:06
%S A145151 1,45,1320,32670,766623,17990973,431474615,10643661600,271155254513,
%T A145151 7162999744329,196798229724018,5629113506142750,167609902621721416,
%U A145151 5193256923854366136,167378142642521719832,5608242214782541676496
%N A145151 9th column of A145142.
%p A145151 row:= proc(n) option remember; local f,i,x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 9) *(n-1)!): seq (a(n), n=10..26);
%t A145151 row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[10]]*(n-1)!; Table[a[n], {n, 10, 26}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *)
%Y A145151 Cf. A145153.
%K A145151 nonn
%O A145151 10,2
%A A145151 _Alois P. Heinz_, Oct 03 2008