This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145153 #20 Aug 18 2019 17:25:36 %S A145153 0,0,1,0,1,0,0,1,1,0,0,1,2,1,0,0,1,3,3,1,1,0,1,4,6,4,2,1,0,1,5,10,10, %T A145153 6,3,1,0,1,6,15,20,16,9,4,1,0,1,7,21,35,36,25,13,5,2,0,1,8,28,56,71, %U A145153 61,38,18,7,3,0,1,9,36,84,127,132,99,56,25,10,4,0,1,10,45,120,211,259,231,155,81,35,14,5 %N A145153 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)). %C A145153 Each row sequence a_n (for n > 0) is produced by a polynomial of degree n-1, whose (rational) coefficients are given in row n of A145140/A145141. The coefficients *(n-1)! are given in A145142. %C A145153 Each column sequence a_k is produced by a recursion, whose coefficients are given by row k of A145152. %H A145153 Alois P. Heinz, <a href="/A145153/b145153.txt">Antidiagonals n = 0..140, flattened</a> %F A145153 G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)). %e A145153 Square array A(n,k) begins: %e A145153 0, 0, 0, 0, 0, 0, 0, ... %e A145153 1, 1, 1, 1, 1, 1, 1, ... %e A145153 0, 1, 2, 3, 4, 5, 6, ... %e A145153 0, 1, 3, 6, 10, 15, 21, ... %e A145153 0, 1, 4, 10, 20, 35, 56, ... %e A145153 1, 2, 6, 16, 36, 71, 127, ... %p A145153 A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end: %p A145153 seq(seq(A(n, d-n), n=0..d), d=0..13); %t A145153 a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Dec 05 2013 *) %Y A145153 Rows 0-9 give: A000004, A000012, A001477, A000217, A000292, A145126, A145127, A145128, A145129, A145130. %Y A145153 Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137. %Y A145153 Main diagonal gives: A145138. %Y A145153 Antidiaginal sums give: A145139. %Y A145153 Numerators/denominators of polynomials for rows give: A145140/A145141. %Y A145153 Cf. A145142, A145143, A145144, A145145, A145146, A145147, A145148, A145149, A145150, A145151, A145152. %K A145153 nonn,tabl %O A145153 0,13 %A A145153 _Alois P. Heinz_, Oct 03 2008