This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145170 #12 Nov 01 2019 11:48:54 %S A145170 1,6,57,866,18444,492924,15424611,542166480,20861518935,864061112296, %T A145170 38081996557383,1771322835258594,86425203984341130, %U A145170 4402953230795279532,233372023965531945057,12832558973488295874402,730347857708249147767893 %N A145170 G.f. A(x) satisfies A(x/A(x)) = 1/(1-x)^6. %H A145170 Robert Israel, <a href="/A145170/b145170.txt">Table of n, a(n) for n = 0..317</a> %F A145170 Self-convolution 6th power of A145167. %F A145170 Self-convolution cube of A145168. %F A145170 Self-convolution square of A145169. %p A145170 A[0]:= x -> 1+c*x: %p A145170 for n from 1 to 20 do %p A145170 cc:= coeff(series(A[n-1](x/A[n-1](x))-1/(1-x)^6, x, n+1),x,n); %p A145170 A[n]:= unapply(eval(A[n-1](x),c=solve(cc,c))+c*x^(n+1),x); %p A145170 od: %p A145170 seq(coeff(A[20](x),x,j),j=0..20); # _Robert Israel_, Aug 19 2018 %t A145170 nmax = 16; sol = {a[0] -> 1}; %t A145170 Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x/A[x]] - 1/(1 - x)^6 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq] [[1]], {n, 1, nmax}]; sol /. Rule -> Set; %t A145170 a /@ Range[0, nmax] (* _Jean-François Alcover_, Nov 01 2019 *) %o A145170 (PARI) {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A);A=1/(1-B)^6);polcoeff(A,n)} %Y A145170 Cf. A145167, A145168, A145169. %K A145170 nonn %O A145170 0,2 %A A145170 _Paul D. Hanna_, Oct 03 2008