This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145176 #12 Jan 16 2025 10:49:23 %S A145176 1,1,1,1,1,1,1,1,1,1,1,7,5,1,1,1,41,181,1,5,1,1,109,97,41,35,1,1,1, %T A145176 853,551,173,107,1,7,1,1,19,13579,1313,307,203,7,1,1,1,1679,251,1081, %U A145176 5969,1681,1169,5,3,1,1,1537,3169,4913,13583,3481,7819,101,11,5,1,1,18167 %N A145176 Numerators of coefficients in series expansion of 1/(Bernoulli trial entropy). %C A145176 This triangle T[n,k] is given by the numerators of rational coefficients R[n,k] appearing in a certain series expansion of 1/S(x) around x0=0, %C A145176 where S(x) = - x*log(x) - (1-x)*log(1-x) is the Bernoulli trial entropy. %C A145176 The series is %C A145176 1/S(x) = 1/(x*(1-log(x))) + sum_{n=1..inf} x^(n-1) * sum_{k=1..n} R[n,k]/(1-log(x))^(k+1) %C A145176 = 1/(x*(1-log(x))) * (1 + sum_{n=1..inf} x^n * sum_{k=1..n} R[n,k]/(1-log(x))^k) %C A145176 The first rationals R[n,k] are %C A145176 1/2 %C A145176 1/6 1/4 %C A145176 1/12 1/6 1/8 %C A145176 1/20 1/9 1/8 1/16 %C A145176 1/30 7/90 5/48 1/12 1/32 %C A145176 1/42 41/720 181/2160 1/12 5/96 1/64 %C A145176 1/56 109/2520 97/1440 41/540 35/576 1/32 1/128 %C A145176 See A145177 for the denominators of R[n,k] and A145178 for numerators scaled to denominators given by A091137. %H A145176 Robert Israel, <a href="/A145176/b145176.txt">Table of n, a(n) for n = 1..10011</a> (first 141 rows, flattened). %p A145176 f:= -x*log(x)-(1-x)*log(1-x): %p A145176 S:= map(normal,eval(series(x*(1-ln(x))/f, x, 12),ln(x)=1-1/t)): %p A145176 for n from 1 to 141 do %p A145176 C:= coeff(S,x,n); %p A145176 for k from 1 to n do T[n,k]:= numer(coeff(C,t,k)); %p A145176 od %p A145176 od: %p A145176 seq(seq(T[n,k],k=1..n),n=1..10); # _Robert Israel_, Jul 09 2015 %o A145176 (MuPAD) ORDER:=14: expand(_invert(series(-x*ln(x)-(1-x)*ln(1-x), x=0))); %Y A145176 Cf. A145177, A145178, A091137. %K A145176 frac,nonn,tabl %O A145176 1,12 %A A145176 _Tilman Neumann_, Oct 03 2008, Oct 04 2008