This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145180 #12 Feb 16 2025 08:33:09 %S A145180 6,234,12813606,2103846732371087589834, %T A145180 9311985549495522884757461748592522243432897275494229148348315206 %N A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6. %C A145180 General formula for continued cotangent recurrences type: %C A145180 a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following: %C A145180 a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]. %C A145180 The next term (a(6)) has 192 digits. - _Harvey P. Dale_, Mar 09 2013 %H A145180 J. Shallit, <a href="http://archive.org/details/jresv80Bn2p285">Predictable regular continued cotangent expansions</a>, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290. %H A145180 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/LehmerCotangentExpansion.html">MathWorld: Lehmer Cotangent Expansion</a> %F A145180 a(n+1)=a(n)^3 + 3*a(n) and a(1)=6 %F A145180 a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))] %F A145180 a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - _Peter Bala_, Nov 23 2012 %t A145180 a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145180 or %t A145180 Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *) %t A145180 NestList[#^3+3#&,6,5] (* _Harvey P. Dale_, Mar 09 2013 *) %Y A145180 Cf. A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)). %Y A145180 Cf. A002813. %K A145180 nonn,easy %O A145180 1,1 %A A145180 _Artur Jasinski_, Oct 03 2008