This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145181 #9 Jun 02 2025 00:37:29 %S A145181 7,364,48229636,112186849649044142700364, %T A145181 1411971263214164889494039458947084336929208169473485667118006013929636 %N A145181 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=7. %C A145181 General formula for continued cotangent recurrences type: %C A145181 a(n+1)=a(n)3+3*a(n) and a(1)=k is following: %C A145181 a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] %C A145181 k=1 see A006267 %C A145181 k=2 see A006266 %C A145181 k=3 see A006268 %C A145181 k=4 see A006267(n+1) %C A145181 k=5 see A006269 %C A145181 k=6 see A145180 %C A145181 k=7 see A145181 %C A145181 k=8 see A145182 %C A145181 k=9 see A145183 %C A145181 k=10 see A145184 %C A145181 k=11 see A145185 %C A145181 k=12 see A145186 %C A145181 k=13 see A145187 %C A145181 k=14 see A145188 %C A145181 k=15 see A145189 %F A145181 a(n+1)=a(n)^3 + 3*a(n) and a(1)=7 %F A145181 a(n)=Floor[((7+Sqrt[7^2+4])/2)^(3^(n-1))] %t A145181 a = {}; k = 7; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145181 or %t A145181 Table[Floor[((7 + Sqrt[53])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %Y A145181 A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145181 nonn %O A145181 1,1 %A A145181 _Artur Jasinski_, Oct 03 2008