This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145182 #8 Jun 02 2025 00:37:36 %S A145182 8,536,153992264,3651713626720249047672536, %T A145182 48695646535829720063008633136610768101443687873746944465180200686293744264 %N A145182 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=8. %C A145182 General formula for continued cotangent recurrences type: %C A145182 a(n+1)=a(n)3+3*a(n) and a(1)=k is following: %C A145182 a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] %C A145182 k=1 see A006267 %C A145182 k=2 see A006266 %C A145182 k=3 see A006268 %C A145182 k=4 see A006267(n+1) %C A145182 k=5 see A006269 %C A145182 k=6 see A145180 %C A145182 k=7 see A145181 %C A145182 k=8 see A145182 %C A145182 k=9 see A145183 %C A145182 k=10 see A145184 %C A145182 k=11 see A145185 %C A145182 k=12 see A145186 %C A145182 k=13 see A145187 %C A145182 k=14 see A145188 %C A145182 k=15 see A145189 %C A145182 The next term has 222 digits. - _Harvey P. Dale_, Mar 02 2018 %F A145182 a(n+1)=a(n)3+3*a(n) and a(1)=8 %F A145182 a(n)=Floor[((8+Sqrt[8^2+4])/2)^(3^(n-1))] %t A145182 a = {}; k = 7; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145182 or %t A145182 Table[Floor[((8 + Sqrt[68])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %t A145182 RecurrenceTable[{a[1]==8,a[n]==a[n-1]^3+3a[n-1]},a,{n,5}] (* _Harvey P. Dale_, Mar 02 2018 *) %Y A145182 A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145182 nonn %O A145182 1,1 %A A145182 _Artur Jasinski_, Oct 03 2008