This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145184 #6 Jun 02 2025 00:37:49 %S A145184 10,1030,1092730090,1304784252725333839617919270, %T A145184 2221345538213703371536935622204403026741331806706388823688859272519059871168740810 %N A145184 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=10. %C A145184 General formula for continued cotangent recurrences type: %C A145184 a(n+1)=a(n)3+3*a(n) and a(1)=k is following: %C A145184 a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] %C A145184 k=1 see A006267 %C A145184 k=2 see A006266 %C A145184 k=3 see A006268 %C A145184 k=4 see A006267(n+1) %C A145184 k=5 see A006269 %C A145184 k=6 see A145180 %C A145184 k=7 see A145181 %C A145184 k=8 see A145182 %C A145184 k=9 see A145183 %C A145184 k=10 see A145184 %C A145184 k=11 see A145185 %C A145184 k=12 see A145186 %C A145184 k=13 see A145187 %C A145184 k=14 see A145188 %C A145184 k=15 see A145189 %F A145184 a(n+1)=a(n)3+3*a(n) and a(1)=10 %F A145184 a(n)=Floor[((10+Sqrt[10^2+4])/2)^(3^(n-1))] %t A145184 a = {}; k = 10; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145184 or %t A145184 Table[Floor[((10 + Sqrt[104])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %Y A145184 A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145184 nonn %O A145184 1,1 %A A145184 _Artur Jasinski_, Oct 03 2008