This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145187 #7 Mar 31 2012 10:22:10 %S A145187 13,2236,11179326964,1397162674037779847605429310236, %T A145187 2727350312258670490076364505418491429134385511825631286349491134548728023756939667650354964 %N A145187 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) with a(1)=13. %C A145187 General formula for continued cotangent recurrences of the form a(n+1)=a(n)^3+3*a(n) with a(1)=k is a(n)=floor(((k+sqrt(k^2+4))/2)^(3^(n-1))). %C A145187 For k=1 see A006267 %C A145187 k=2 see A006266 %C A145187 k=3 see A006268 %C A145187 k=4 see A006267(n+1) %C A145187 k=5 see A006269 %C A145187 k=6 see A145180 %C A145187 k=7 see A145181 %C A145187 k=8 see A145182 %C A145187 k=9 see A145183 %C A145187 k=10 see A145184 %C A145187 k=11 see A145185 %C A145187 k=12 see A145186 %C A145187 k=13 see A145187 %C A145187 k=14 see A145188 %C A145187 k=15 see A145189 %F A145187 a(n+1)=a(n)^3+3*a(n) and a(1)=13 %F A145187 a(n)=Floor[((13+Sqrt[13^2+4])/2)^(3^(n-1))] %t A145187 a = {}; k = 13; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145187 or %t A145187 Table[Floor[((13 + Sqrt[173])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %Y A145187 Cf. A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145187 nonn %O A145187 1,1 %A A145187 _Artur Jasinski_, Oct 03 2008