This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145188 #8 Jun 02 2025 00:38:03 %S A145188 14,2786,21624372014,10111847525912679844192131854786, %T A145188 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014 %N A145188 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=14. %C A145188 General formula for continued cotangent recurrences type: %C A145188 a(n+1)=a(n)3+3*a(n) and a(1)=k is following: %C A145188 a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] %C A145188 k=1 see A006267 %C A145188 k=2 see A006266 %C A145188 k=3 see A006268 %C A145188 k=4 see A006267(n+1) %C A145188 k=5 see A006269 %C A145188 k=6 see A145180 %C A145188 k=7 see A145181 %C A145188 k=8 see A145182 %C A145188 k=9 see A145183 %C A145188 k=10 see A145184 %C A145188 k=11 see A145185 %C A145188 k=12 see A145186 %C A145188 k=13 see A145187 %C A145188 k=14 see A145188 %C A145188 k=15 see A145189 %C A145188 Essentially the same as A006266. [From _R. J. Mathar_, Mar 18 2009] %F A145188 a(n+1)=a(n)3+3*a(n) and a(1)=14 %F A145188 a(n)=Floor[((14+Sqrt[14^2+4])/2)^(3^(n-1))] %t A145188 a = {}; k = 14; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145188 or %t A145188 Table[Floor[((14 + Sqrt[200])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %Y A145188 A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145188 nonn %O A145188 1,1 %A A145188 _Artur Jasinski_, Oct 03 2008