This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145189 #8 Jun 02 2025 00:38:10 %S A145189 15,3420,40001698260,64008151994095341241755497070780, %T A145189 262244184463346778261182615794616508638576477409715732397097802610370956164308073990185129764340 %N A145189 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=15. %C A145189 General formula for continued cotangent recurrences type: %C A145189 a(n+1)=a(n)3+3*a(n) and a(1)=k is following: %C A145189 a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] %C A145189 k=1 see A006267 %C A145189 k=2 see A006266 %C A145189 k=3 see A006268 %C A145189 k=4 see A006267(n+1) %C A145189 k=5 see A006269 %C A145189 k=6 see A145180 %C A145189 k=7 see A145181 %C A145189 k=8 see A145182 %C A145189 k=9 see A145183 %C A145189 k=10 see A145184 %C A145189 k=11 see A145185 %C A145189 k=12 see A145186 %C A145189 k=13 see A145187 %C A145189 k=14 see A145188 %C A145189 k=15 see A145189 %F A145189 a(n+1)=a(n)3+3*a(n) and a(1)=14 %F A145189 a(n)=Floor[((14+Sqrt[14^2+4])/2)^(3^(n-1))] %t A145189 a = {}; k = 15; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a %t A145189 or %t A145189 Table[Floor[((15 + Sqrt[229])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) %t A145189 NestList[#^3+3#&,15,5] (* _Harvey P. Dale_, Aug 20 2017 *) %Y A145189 A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 %K A145189 nonn %O A145189 1,1 %A A145189 _Artur Jasinski_, Oct 03 2008