A145195 Odd composite numbers n with property that at least one prime divisor p of n is a substring of the binary representation of n.
15, 27, 39, 45, 51, 55, 57, 63, 75, 85, 87, 91, 93, 95, 99, 105, 111, 117, 119, 123, 125, 135, 141, 147, 153, 155, 159, 165, 171, 175, 177, 183, 185, 187, 189, 195, 201, 205, 207, 213, 215, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 255, 267, 279, 285
Offset: 1
Examples
15 is 1111_2 and 15=3*5 where 3 is 11_2, so 15 is a term.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
f[n_] := Block[{nb = ToString@ FromDigits@ IntegerDigits[n, 2], psb = ToString@ FromDigits@ IntegerDigits[ #, 2] & /@ First@ Transpose@ FactorInteger@n, c = 0, k = 1}, lmt = 1 + Length@ psb; While[k < lmt, If[ StringCount[nb, psb[[k]]] > 0, c++ ]; k++ ]; c]; f[1] = 0; Select[ Range@ 286, !PrimeQ@ # && OddQ@ # && f@# > 0 &]
Comments