This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145201 #16 Aug 10 2015 03:46:58 %S A145201 0,1,1,2,0,1,2,3,2,1,4,0,0,0,1,0,4,3,1,3,1,6,0,0,0,0,0,1,0,4,4,1,0,2, %T A145201 4,1,0,0,8,0,3,0,6,0,1,0,6,0,0,5,3,0,0,5,1,10,0,0,0,0,0,0,0,0,0,1,0,0, %U A145201 0,4,6,11,6,3,6,5,6,1,12,0,0,0,0,0,0,0,0,0,0,0,1,0,8,0,0,0,0,7,5,7,7,7,7,7 %N A145201 Triangle read by rows: T(n,k) = S(n,k) mod n, where S(n,k) = Stirling numbers of the first kind. %C A145201 The triangle T(n,k) contains many zeros. The distribution of nonzero entries is quite chaotic, but shows regular patterns, too, e.g.: %C A145201 1) T(n,1) > 0 for n prime or n=4; T(n,1)=0 else %C A145201 2) T(5k,k) > 0 for all k %C A145201 More generally, it seems that: %C A145201 3) T(pk,k) > 0 for k>0 and primes p %C A145201 The following table depicts the zero (-) and nonzero (x) entries for the first 80 rows of the triangle: %C A145201 - %C A145201 xx %C A145201 x-x %C A145201 xxxx %C A145201 x---x %C A145201 -xxxxx %C A145201 x-----x %C A145201 -xxx-xxx %C A145201 --x-x-x-x %C A145201 -x--xx--xx %C A145201 x---------x %C A145201 ---xxxxxxxxx %C A145201 x-----------x %C A145201 -x----xxxxxxxx %C A145201 --x-x-x-x-x-x-x %C A145201 -----xxx-x-x-xxx %C A145201 x---------------x %C A145201 -----x-xxx-x-x-xxx %C A145201 x-----------------x %C A145201 ---x---xxxxx-x-xxxxx %C A145201 --x---x-x---x-x---x-x %C A145201 -x--------xxxx----xxxx %C A145201 x---------------------x %C A145201 -------x-xxx-xxx-xxx-xxx %C A145201 ----x---x---x---x---x---x %C A145201 -x----------xx--xx--xx--xx %C A145201 --------x-x-x-x-x-x-x-x-x-x %C A145201 ---x-----x--xxxxxxxxxxxxxxxx %C A145201 x---------------------------x %C A145201 -----x---x-x--xxxxxxxxxxxxxxxx %C A145201 x-----------------------------x %C A145201 -------------xxx-x-x-x-x-x-x-xxx %C A145201 --x-------x-x-x-------x-----x-x-x %C A145201 -x--------------xx--------------xx %C A145201 ----x-x---x---x-x-----x---x-x-x---x %C A145201 -----------x-x-xxxxx---x-x-x-x-xxxxx %C A145201 x-----------------------------------x %C A145201 -x----------------xxxx------------xxxx %C A145201 --x---------x-x---x-x-----x---x-x---x-x %C A145201 -------x---x---x-xxx-xxx---x-x-x-xxx-xxx %C A145201 x---------------------------------------x %C A145201 -----x-----x-x-x-x-xxx-xxx---x-x-x-xxx-xxx %C A145201 x-----------------------------------------x %C A145201 ---x---------x------xxxxxxxx-x-x-x-xxxxxxxxx %C A145201 --------x---x-x-x-x-x-x-x-x-x---x-x-x-x-x-x-x %C A145201 -x--------------------xxxxxxxx--------xxxxxxxx %C A145201 x---------------------------------------------x %C A145201 ---------------x-x---xxx-x-x-xxx-x-x--xx-x-x-xxx %C A145201 ------x-----x-----x-----x-----x-----x-----x-----x %C A145201 ---------x---x---x---x--xx---x--xx---x--xx---x--xx %C A145201 --x-------------x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x %C A145201 ---x-----------x--------xxxx-x-xxxxx---xxxxx-x-xxxxx %C A145201 x---------------------------------------------------x %C A145201 -----------------x-x-x-x-xxxxx-x-xxxxx-x-xxxxx-x-xxxxx %C A145201 ----x-----x---x---------x-----x---x---------x-----x---x %C A145201 -------x-----x-----------xxx-xxx--xx-xxx-xxx-xxx-xxx-xxx %C A145201 --x---------------x-x---------------x-x---------------x-x %C A145201 -x--------------------------xx--xx--xx--xx--xx--xx--xx--xx %C A145201 x---------------------------------------------------------x %C A145201 -----------x---x---x-x-x----xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx %C A145201 x-----------------------------------------------------------x %C A145201 -x----------------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx %C A145201 --------x-----x-----x-x-x-x-----x-----x-x-x-x-----x-----x-x-x-x %C A145201 -----------------------------xxx-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xxx %C A145201 ----x-------x---x---x---x---x---x---x---x---x-------x---x---x---x %C A145201 -----x---------x-----x-x-x-x-x--xx-x---x-x---x-x-------x-x-x---xxx %C A145201 x-----------------------------------------------------------------x %C A145201 ---x---------------x------------xxxx-------------x-x------------xxxx %C A145201 --x-------------------x-x-x-x-x-x-------x-x-x-x-x-x-------x-x-x-x-x-x %C A145201 ---------x---x-x-x---x---x-x-x---xxxxx---x---x---x-x-x---x---x-x-xxxxx %C A145201 x---------------------------------------------------------------------x %C A145201 -----------------------x-x-x-x-x-xxx-xxx-x-x-x-x-x-x-x-x---x-x-x-xxx-xxx %C A145201 x-----------------------------------------------------------------------x %C A145201 -x----------------------------------xx--xx--------------------------xx--xx %C A145201 --------------x---x---x-x-x---x-x-x-x-x---x-x-x-x-x---x-x-x-x-x---x-x-x-x-x %C A145201 ---x-----------------x--------------xxxxxxxx---------x-x-x-x--------xxxxxxxx %C A145201 ------x---x-----x-----x---x-x-----x-x---------x-----x---x-x-----x-x---x-----x %C A145201 -----x-----------x-------x-x-x-x-x-x-xxxxxxxxx-x-x-x-x-x-x-x-x-x-x-x-xxxxxxxxx %C A145201 x-----------------------------------------------------------------------------x %C A145201 ---------------x---x---------------x-xxx-x-x-xxx---x---x-x-x-x-x---x-xxx-x-x-xxx %C A145201 SUM(A057427(a(k)): 1<=k<=n) = A005127(n). - _Reinhard Zumkeller_, Jul 04 2009 %F A145201 T(n,k) = S(n,k) mod n, where S(n,k) = Stirling numbers of the first kind. %e A145201 Triangle starts: %e A145201 0; %e A145201 1, 1; %e A145201 2, 0, 1; %e A145201 2, 3, 2, 1; %e A145201 4, 0, 0, 0, 1; %e A145201 0, 4, 3, 1, 3, 1; %e A145201 6, 0, 0, 0, 0, 0, 1; %e A145201 .... %o A145201 (PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(stirling(n, k, 1) % n, ", ");); print(););} \\ _Michel Marcus_, Aug 10 2015 %Y A145201 Cf. A000040, A008275, A061006 (first column). %K A145201 nonn,tabl %O A145201 1,4 %A A145201 _Tilman Neumann_, Oct 04 2008, Oct 06 2008