A145225 Triangle read by rows: T(n,k) is the number of odd permutations (of an n-set) with exactly k fixed points.
0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 20, 30, 0, 10, 0, 0, 135, 120, 90, 0, 15, 0, 0, 924, 945, 420, 210, 0, 21, 0, 0, 7420, 7392, 3780, 1120, 420, 0, 28, 0, 0, 66744, 66780, 33264, 11340, 2520, 756, 0, 36, 0, 0
Offset: 0
Examples
Triangle starts: 0; 0, 0; 1, 0, 0; 0, 3, 0, 0; 6, 0, 6, 0, 0; 20, 30, 0, 10, 0, 0; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
- Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
Crossrefs
Programs
-
Maple
A145225 := proc(n,k) binomial(n,k)*A000387(n-k) ; # re-use code of A000387 end proc: seq(seq(A145225(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 06 2023
-
Mathematica
A145225[n_, k_] := Binomial[n, k]*Binomial[n - k, 2]*Subfactorial[n - k - 2]; Table[A145225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 31 2025 *)
Formula
T(n,k) = C(n,k) * A000387(n-k).
E.g.f.: x^(k+2) * exp(-x) / (2*k!*(1-x)).