cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145235 a(n) = numerator of Atkin polynomials A_n(j) evaluated at j = 1728.

This page as a plain text file.
%I A145235 #4 Sep 25 2017 07:14:51
%S A145235 1008,421344,901254816,77507914176,33392993024160,14400272882673216,
%T A145235 80771130598914068544,13408007679419735378304,
%U A145235 19679603271468316601505696,8496755026505881957246582080,215817577673249401714063184832,93197366130882174446119601563776,1006205363432069396407530278283307584
%N A145235 a(n) = numerator of Atkin polynomials A_n(j) evaluated at j = 1728.
%H A145235 M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
%F A145235 See Maple code for formula.
%e A145235 1008, 421344, 901254816/5, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544/13, ...
%p A145235 af:=proc(a,n) mul(a+i,i=0..n-1); end; A1728:=n->-12^(3*n+1)*af(-1/12,n)*af(7/12,n)/(2*n-1)!;
%Y A145235 Cf. A145295, A145093.
%K A145235 nonn,frac
%O A145235 1,1
%A A145235 _N. J. A. Sloane_, Feb 28 2009