cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145274 a(n) = A145231(n+1)/A145231(n).

This page as a plain text file.
%I A145274 #11 Oct 19 2024 08:35:15
%S A145274 329,10749959329,13354478338703157414450712411084788083329
%N A145274 a(n) = A145231(n+1)/A145231(n).
%C A145274 A member of the family of sequences of type:
%C A145274 (G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2.
%C A145274 For k=2 see A001566.
%C A145274 For k=3 see A002814(n+2).
%C A145274 For k=4 see this sequence.
%C A145274 For k=5 see A145275.
%C A145274 For k=6 see A145276.
%C A145274 For k=7 see A145277.
%H A145274 Amiram Eldar, <a href="/A145274/b145274.txt">Table of n, a(n) for n = 1..5</a>
%F A145274 a(n) = (G^(4^(n + 1)) - (1 - G)^(4^(n + 1)))/(G^(4^n) - (1 - G)^(4^n)) where G = (1 + sqrt(5))/2.
%t A145274 G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^(n + 1)) - (1 - G)^(4^(n + 1)))/Sqrt[5]]/Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 5}]
%Y A145274 Cf. A001566, A002814, A145231, A145274, A145275, A145276, A145277.
%K A145274 nonn
%O A145274 1,1
%A A145274 _Artur Jasinski_, Oct 06 2008