cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145275 a(n) = A145232(n+1)/A145232(n).

This page as a plain text file.
%I A145275 #12 Oct 23 2024 16:33:39
%S A145275 15005,792070839820228500005,
%T A145275 311759807762174781605301007201736860141952393239819056256447450170889021063181630442743411596527196875005
%N A145275 a(n) = A145232(n+1)/A145232(n).
%C A145275 A member of the family of sequences of type:
%C A145275 (G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2.
%C A145275 For k=2 see A001566.
%C A145275 For k=3 see A002814(n+2).
%C A145275 For k=4 see A145274.
%C A145275 For k=5 see this sequence.
%C A145275 For k=6 see A145276.
%C A145275 For k=7 see A145277.
%H A145275 Amiram Eldar, <a href="/A145275/b145275.txt">Table of n, a(n) for n = 1..4</a>
%F A145275 a(n) = (G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/(G^(5^n) - (1 - G)^(5^n)) where G = (1 + sqrt(5))/2.
%t A145275 G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/Sqrt[5]]/Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 5}]
%Y A145275 Cf. A001566, A001622, A002814, A145232, A145274, A145276, A145277.
%K A145275 nonn
%O A145275 1,1
%A A145275 _Artur Jasinski_, Oct 06 2008