This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145275 #12 Oct 23 2024 16:33:39 %S A145275 15005,792070839820228500005, %T A145275 311759807762174781605301007201736860141952393239819056256447450170889021063181630442743411596527196875005 %N A145275 a(n) = A145232(n+1)/A145232(n). %C A145275 A member of the family of sequences of type: %C A145275 (G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2. %C A145275 For k=2 see A001566. %C A145275 For k=3 see A002814(n+2). %C A145275 For k=4 see A145274. %C A145275 For k=5 see this sequence. %C A145275 For k=6 see A145276. %C A145275 For k=7 see A145277. %H A145275 Amiram Eldar, <a href="/A145275/b145275.txt">Table of n, a(n) for n = 1..4</a> %F A145275 a(n) = (G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/(G^(5^n) - (1 - G)^(5^n)) where G = (1 + sqrt(5))/2. %t A145275 G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/Sqrt[5]]/Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 5}] %Y A145275 Cf. A001566, A001622, A002814, A145232, A145274, A145276, A145277. %K A145275 nonn %O A145275 1,1 %A A145275 _Artur Jasinski_, Oct 06 2008