A145295 a(n) = denominator of Atkin polynomials A_n(j) evaluated at j = 1728.
1, 1, 5, 1, 1, 1, 13, 5, 17, 17, 1, 1, 25, 5, 29, 29, 29, 5, 37, 481, 1517, 41, 205, 41, 1, 17, 901, 265, 53, 53, 3233, 61, 3965, 61, 61, 1, 73, 1825, 365, 73, 73, 73, 85, 493, 2581, 33553, 89, 445, 8633, 8633, 871933, 871933, 48985, 9797, 1067873, 39511301, 46028629, 230143145
Offset: 1
Examples
1008, 421344, 901254816/5, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544/13, ...
Links
- M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
Programs
-
Maple
af:=proc(a,n) mul(a+i,i=0..n-1); end; A1728:=n->-12^(3*n+1)*af(-1/12,n)*af(7/12,n)/(2*n-1)!;
Formula
See Maple code for formula.