This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145296 #14 May 04 2024 02:55:02 %S A145296 57,239,1985,10133,9466,11389,27590,51412,153765,344464,107551,296344, %T A145296 172078,432436,931837,753090,676541,2321221,2027724,3394758,1706203, %U A145296 4841182,1438398,2947125,398366,5657795,4942017,9400802,11906503 %N A145296 Smallest k such that k^2 + 1 is divisible by A002144(n)^3. %H A145296 Chai Wah Wu, <a href="/A145296/b145296.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..150 from Klaus Brockhaus) %e A145296 a(3) = 1985 since A002144(3) = 17, 1985^2 + 1 = 3940226 = 2*17^3*401 and for no k < 1985 does 17^3 divide k^2+1. %o A145296 (PARI) {m=12000000; pmax=300; z=70; v=vector(z); for(n=1, m, fac=factor(n^2+1); for(j=1, #fac[, 1], if(fac[j, 2]>=3&&fac[j, 1]<=pmax, q=primepi(fac[j, 1]); if(q<=z&&v[q]==0, v[q]=n)))); t=1; j=0; while(t&&j<z, j++; p=prime(j); if(p%4==1, if(v[j]==0, t=0, print1(v[j], ","))))} %o A145296 (PARI) {e=3; forprime(p=2, 300, if(p%4==1, q=p^e; m=q; while(!ispower(m-1,2,&n), m=m+q); print1(n, ",")))} \\ _Klaus Brockhaus_, Oct 09 2008 %o A145296 (Python) %o A145296 from itertools import islice %o A145296 from sympy import nextprime, sqrt_mod_iter %o A145296 def A145296_gen(): # generator of terms %o A145296 p = 1 %o A145296 while (p:=nextprime(p)): %o A145296 if p&3==1: %o A145296 yield min(sqrt_mod_iter(-1,p**3)) %o A145296 A145296_list = list(islice(A145296_gen(),20)) # _Chai Wah Wu_, May 04 2024 %Y A145296 Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145297, A145298, A145299. %K A145296 nonn %O A145296 1,1 %A A145296 _Klaus Brockhaus_, Oct 08 2008