This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145299 #9 May 04 2024 02:55:09 %S A145299 1068,1999509,390112,253879357,756360062,2363588163,5041394261, %T A145299 9435321777,41865466758,102666405913,197177418061,316411915250, %U A145299 171829799914,625667121807,182312430890,1095001339019,6390289199260 %N A145299 Smallest k such that k^2+1 is divisible by A002144(n)^6. %H A145299 Chai Wah Wu, <a href="/A145299/b145299.txt">Table of n, a(n) for n = 1..10000</a> %e A145299 a(1) = 1068 since A002144(1) = 5, 1068^2+1 = 1140625 = 5^6*73 and for no k < 1068 does 5^6 divide k^2+1. a(11) = 197177418061 since A002144(11) = 97, 197177418061^2+1 = 38878934193202368999722 = 2*97^6*23337479509 and for no k < 197177418061 does 97^6 divide k^2+1. %o A145299 (PARI) { e=6; forprime(p=2, 1000, if(p%4==1, k=lift(sqrt(-1+O(p^e))); if(k>p^e/2,k=p^e-k); print1(k, ", "))) } %o A145299 (Python) %o A145299 from itertools import islice %o A145299 from sympy import nextprime, sqrt_mod_iter %o A145299 def A145299_gen(): # generator of terms %o A145299 p = 1 %o A145299 while (p:=nextprime(p)): %o A145299 if p&3==1: %o A145299 yield min(sqrt_mod_iter(-1,p**6)) %o A145299 A145299_list = list(islice(A145299_gen(),20)) # _Chai Wah Wu_, May 04 2024 %Y A145299 Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298. %K A145299 nonn %O A145299 1,1 %A A145299 _Klaus Brockhaus_, Oct 17 2008 %E A145299 More terms and efficient PARI program from. - _Max Alekseyev_, Oct 28 2008