cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145301 a(n) = 12*a(n-1) - 30*a(n-2) with a(0)=1 and a(1)=6.

This page as a plain text file.
%I A145301 #16 Sep 08 2022 08:45:38
%S A145301 1,6,42,324,2628,21816,182952,1540944,13002768,109804896,927575712,
%T A145301 7836761664,66213868608,559463573376,4727146822272,39941854665984,
%U A145301 337487851323648,2851598575904256,24094547371141632,203586611176571904,1720202912984613888
%N A145301 a(n) = 12*a(n-1) - 30*a(n-2) with a(0)=1 and a(1)=6.
%C A145301 Binomial transform is A152262, inverse binomial transform is A146962.
%H A145301 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12, -30).
%F A145301 G.f.: (1-6x)/(1-12x+30x^2). - _R. J. Mathar_, Oct 10 2008
%F A145301 a(n) = ((6+sqrt(6))^n+(6-sqrt(6))^n)/2.
%F A145301 a(n) = sum_{k, 0<=k<=n} 6^k * A098158(n,k). - _Philippe Deléham_, Oct 14 2008
%t A145301 CoefficientList[Series[(1 - 6 x)/(1 - 12 x + 30 x^2), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Jun 14 2014 *)
%o A145301 (Magma) Z<x>:= PolynomialRing(Integers()); N<r6>:=NumberField(x^2-6); S:=[ ((6+r6)^n+(6-r6)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Oct 20 2008
%Y A145301 Cf. A098158, A152262, A146962.
%K A145301 nonn
%O A145301 0,2
%A A145301 Al Hakanson (hawkuu(AT)gmail.com), Oct 06 2008
%E A145301 More terms from _R. J. Mathar_, Oct 10 2008
%E A145301 Corrected definition. - _Philippe Deléham_, Oct 15 2008
%E A145301 Edited by _Klaus Brockhaus_, Jul 08 2009