cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145353 Sum of the number of e-divisors of all numbers from 1 up to n.

This page as a plain text file.
%I A145353 #13 Dec 08 2022 07:36:33
%S A145353 1,2,3,5,6,7,8,10,12,13,14,16,17,18,19,22,23,25,26,28,29,30,31,33,35,
%T A145353 36,38,40,41,42,43,45,46,47,48,52,53,54,55,57,58,59,60,62,64,65,66,69,
%U A145353 71,73,74,76,77,79,80,82,83,84,85,87,88,89,91,95,96,97,98,100,101,102,103,107
%N A145353 Sum of the number of e-divisors of all numbers from 1 up to n.
%H A145353 Amiram Eldar, <a href="/A145353/b145353.txt">Table of n, a(n) for n = 1..10000</a>
%H A145353 J. Wu, <a href="http://dx.doi.org/10.5802/jtnb.136">Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré</a>, J. Theor. Nombr. Bordeaux 7 (1) (1995) 133-141.
%F A145353 a(n) ~ c * n, where c = A327837. - _Amiram Eldar_, Dec 08 2022
%t A145353 f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[ediv, 100]] (* _Amiram Eldar_, Jun 23 2019 *)
%o A145353 (PARI) d(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i,2]));}
%o A145353 lista(nmax) = {my(s = 0); for(n = 1, nmax, s += d(n); print1(s, ", ")); } \\ _Amiram Eldar_, Dec 08 2022
%Y A145353 Equals partial sums of A049419.
%Y A145353 Cf. A099353, A327837.
%Y A145353 Different from A013936 (which does not contain 52).
%K A145353 nonn
%O A145353 1,2
%A A145353 _Jaroslav Krizek_ and _N. J. A. Sloane_, Mar 03 2009