This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145357 #13 May 27 2025 10:30:53 %S A145357 1,6,1,42,6,1,336,78,6,1,3024,588,78,6,1,30240,6804,804,78,6,1,332640, %T A145357 62496,8316,804,78,6,1,3991680,753984,85176,9612,804,78,6,1,51891840, %U A145357 8273664,1021608,94248,9612,804,78,6,1,726485760,109118016,11394432,1157688,102024 %N A145357 Lower triangular array, called S1hat(6), related to partition number array A145356. %C A145357 If in the partition array M31hat(6):=A145356 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(6). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039. %C A145357 The first columns are A001725(n+4), A145359, A145360,... %H A145357 Wolfdieter Lang, <a href="/A145357/a145357.txt">First 10 rows of the array and more.</a> %H A145357 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Lang/lang.html">Combinatorial Interpretation of Generalized Stirling Numbers</a>, J. Int. Seqs. Vol. 12 (2009) 09.3.3. %F A145357 a(n,m) = sum(product(|S1(6;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(6,n,1)|= A049374(n,1) = A001725(n+4) = (n+4)!/5!. %e A145357 Triangle begins: %e A145357 [1]; %e A145357 [6,1]; %e A145357 [42,6,1]; %e A145357 [336,78,6,1]; %e A145357 [3024,588,78,6,1]; %e A145357 ... %Y A145357 Cf. A145358 (row sums). %K A145357 nonn,easy,tabl %O A145357 1,2 %A A145357 _Wolfdieter Lang_, Oct 17 2008