This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145364 #13 May 27 2025 10:30:42 %S A145364 1,2,1,2,2,1,0,6,2,1,0,4,6,2,1,0,4,12,6,2,1,0,0,12,12,6,2,1,0,0,8,28, %T A145364 12,6,2,1,0,0,8,24,28,12,6,2,1,0,0,0,24,56,28,12,6,2,1,0,0,0,16,56,56, %U A145364 28,12,6,2,1,0,0,0,16,48,120,56,28,12,6,2,1,0,0,0,0,48,112,120,56,28,12,6,2,1 %N A145364 Lower triangular array, called S1hat(-2), related to partition number array A145363. %C A145364 If in the partition array M31hat(-2):=A145363 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-2). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039. %C A145364 The first column is [1,2,2,0,0,0,...]= A008279(2,n-1), n>=1. %H A145364 Wolfdieter Lang, <a href="/A145364/a145364.txt">First 10 rows of the array and more.</a> %H A145364 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Lang/lang.html">Combinatorial Interpretation of Generalized Stirling Numbers</a>, J. Int. Seqs. Vol. 12 (2009) 09.3.3. %F A145364 a(n,m) = sum(product(S1(-2;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-2,n,1)= A008279(2,n-1) = [1,2,2,0,0,0,...], n>=1. %e A145364 Triangle begins: %e A145364 [1]; %e A145364 [2,1]; %e A145364 [2,2,1]; %e A145364 [0,6,2,1]; %e A145364 [0,4,6,2,1]; %e A145364 ... %Y A145364 Cf. A145365 (row sums). %K A145364 nonn,easy,tabl %O A145364 1,2 %A A145364 _Wolfdieter Lang_, Oct 17 2008