A145372 Partition number array, called M31hat(-5).
1, 5, 1, 20, 5, 1, 60, 20, 25, 5, 1, 120, 60, 100, 20, 25, 5, 1, 120, 120, 300, 400, 60, 100, 125, 20, 25, 5, 1, 0, 120, 600, 1200, 120, 300, 400, 500, 60, 100, 125, 20, 25, 5, 1, 0, 0, 600, 2400, 3600, 120, 600, 1200, 1500, 2000, 120, 300, 400, 500, 625, 60, 100, 125, 20
Offset: 1
Examples
Triangle begins; [1]; [5,1]; [20,5,1]; [60,20,25,5,1]; [120,60,100,20,25,5,1]; ... a(4,3)= 25 = S1(-4;2,1)^2. The relevant partition of 4 is (2^2).
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Crossrefs
Cf. A145369 (M31hat(-4)).
Formula
a(n,k) = product(S1(-5;j,1)^e(n,k,j),j=1..n) with S1(-5;n,1) = A008279(5,n-1) = [1,5,20,60,120,120,0,0,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Comments